
Clean Code SOLID
The Single Responsibility Principle



Pre-work

• Video: https://cleancoders.com/episode/clean-code-episode-9
• Exam: https://cleancoders.com/episode/clean-code-episode-9/exam

https://cleancoders.com/episode/clean-code-episode-9
https://cleancoders.com/episode/clean-code-episode-9/exam


Chapters

Chapter Time

Overview 00:01:01
General Relativity 00:03:54
Responsibility 00:10:05
It’s About Users 00:12:50
It’s About Roles 00:14:37
Reprise 00:15:50
The Two Values of Software 00:16:19
Friction 00:20:01
CM Collision 00:20:58
Fan Out 00:22:41
Colocation is Coupling 00:24:15
Encroaching Fragility 00:26:49
SRP 00:27:51

Chapter Time

Examples 00:30:12
Conclusion 00:39:58
Solutions 00:41:15
Invert Dependencies 00:41:38
Extract Classes 00:42:45
Facade 00:44:05
Interface Segregation 00:45:02
Welcome to Engineering 00:45:53
Case Study 00:48:06
Architecture 00:53:47
Design 00:55:20
Faking it 00:57:01
Conclusion 01:00:14



Timetable

Activity Time

Greetings, Warmup 5 min
Separation of concerns 10 min
Exercise 1 10 min
Group discussion 10 min
SPR overview 10 min
Exercise 2 15 min
Group discussion 10 min
Exercise 3 5 min
Group discussion 10 min
Summary 10 min
Closing 5 min



Warmup

• What are the common challenges that you face when creating unit tests for your
code?

Type in the meeting chat



Separation of Concerns

• How?
Reduce artificial dependencies
Simplify change

• What?
Split
Segregate
Extract

• Orthogonality
• Cohesion
• Single Responsibility Principle (SRP)



Exercise 1

• Prompt
Rooms 1, 3, 5, 7, 9

– Describe the method to define responsibilities.
– What to do if class has multiple functions?
– Are all of them a separate responsibility?

Rooms 2, 4, 6, 8, 10
– How users/actors/roles/responsibilities correlate?
– Are they the same? Could they differ?
– Provide example of same and different combinations of users, actorsi, roles, and

responsibilities.
• Time limit: 10 minutes



Definitions

• Actor - single source of change
Roles
Separate users of your software from the roles they playing

• Responsibility
Responsibility, that your software has, is the responsibility to serve different groups of
customers who consumes those services.
Responsibility is the source of change.
Responsibilities are tied to the actors, not the users
To find responsibilities, find families of functions with the similar audience/users
requesting changes.

• Two values of software
Ability to change frequently - primary value
Expected behavior - secondary value



SRP Overview

• Group only those things that truly belong together, and separate everything that
does not strictly belong

• How to design software:
Identify the actors
Responsibilities that serve those actors
Allocate those responsibilities in modules
Structure the software so that responsibilities became a plugins to the rest of the
application
Separate source files



Exercise 2

• Code review practice:
Use the worksheet
Based on the code, suggest code improvements, explain why.
Use the worksheet to record your suggestions

• Time limit: 15 min



Exercise 2 code for review
1 def place_order(customer, product, quantity):
2 # Calculate the order total
3 total = product.price * quantity
4
5 # Check if the customer has enough credit
6 if customer.credit >= total:
7 # Reduce the customer's credit
8 customer.credit -= total
9

10 # Create an order object and add the order to the database
11 order = Order(customer=customer, product=product, quantity=quantity, total=total)
12 db.add_order(order)
13
14 # Update the product inventory
15 product.inventory -= quantity
16 db.update_product(product)
17
18 # Send an email confirmation to the customer
19 email.send_confirmation_email(customer.email, order)
20 return order
21 else:
22 raise ValueError("Insufficient credit")



Group discussion

• Groups to share their findings



Exercise 2 solution

1 def place_order(customer, product, quantity):
2 order_total = calculate_order_total(product, quantity)
3 check_customer_credit(customer, order_total)
4 reduce_customer_credit(customer, order_total)
5 order = create_order(customer, product, quantity, order_total)
6 add_order_to_database(order)
7 update_product_inventory(product, quantity)
8 send_email_confirmation(customer, order)
9 return order

10
11 def check_customer_credit(customer, order_total):
12 if customer.credit < order_total:
13 raise ValueError("Insufficient credit")
14
15 def reduce_customer_credit(customer, order_total):
16 customer.credit -= order_total



Exercise 2 solution (cont’d)

1 def calculate_order_total(product, quantity):
2 return product.price * quantity
3
4 def create_order(customer, product, quantity, order_total):
5 return Order(customer=customer, product=product, quantity=quantity, total=order_total)
6
7 def add_order_to_database(order):
8 db.add_order(order)
9

10 def update_product_inventory(product, quantity):
11 product.inventory -= quantity
12 db.update_product(product)
13
14 def send_email_confirmation(customer, order):
15 email.send_confirmation_email(customer.email, order)



Exercise 3

• Code review practice:
Propose the code changes for the code snippet

• Use the worksheet to record your suggestions
• Time limit: 5 min



Exercise 3 code

1 class Car:
2 def __init__(self, engine_size, num_doors):
3 self.engine_size = engine_size
4 self.num_doors = num_doors
5
6 def start(self):
7 # code to start the car's engine
8
9 def lock_doors(self):

10 # code to lock the car's doors
11
12 def play_music(self):
13 # code to play music in the car



Group discussion

• Groups to share their findings



Exercise 3 potential solution
1 class Car:
2 def __init__(self, engine_size, num_doors):
3 self.engine_size = engine_size
4 self.num_doors = num_doors
5 self.engine = Engine()
6 self.music_player = MusicPlayer()
7 self.doors = DoorLocks()
8
9

10 class Engine:
11 def start(self):
12 # code to start the car's engine
13
14
15 class MusicPlayer:
16 def play_music(self):
17 # code to play music in the car
18
19
20 class DoorLocks:
21 def lock(self):
22 # code to lock the car's doors



Summary

• Conformance with SRP might require pulling apart
code/functions/classes/components

• Potential solutions:
Dependency inversion
Extract classes
Use design patterns (facade)
Interface segregation

• None of the solution are perfect
• Carefully allocating responsibilities to classes and modules we keep the primary

value of software high
• When module has more than one responsibility, the system tends to became fragile



What is next?

• Coding dojo to practice the Single Responsibility Principle
• Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
– The Software Craftsmanship Rule


