Clean Code SOLID
Foundations of the SOLID Principles



Pre-work

® Video: https://cleancoders.com/episode/clean-code-episode-8
® Exam: https://cleancoders.com/episode/clean-code-episode-8/exam


https://cleancoders.com/episode/clean-code-episode-8
https://cleancoders.com/episode/clean-code-episode-8/exam

Chapters

Chapter Time
Overview 00:44
Special Relativity 04:45
The Source Code is the Design 11:14
Design Smells 20:04
Rigidity 20:33
Fragility 23:06
Immobility 24:43
Viscosity 26:07
Needless Complexity 27:44

Chapter Time
Code Rot 30:37
Version Two 33:54
Version Three 35:57
Summary 36:51
What is OO 37:29
Dependency Inversion 39:15
What is 00?7 43:30
Dependency Management 46:43
Conclusion 48:46




Timetable

Activity Time
Warmup 5 min
Exercise 1 15 min
Three levels of software development 15 min
Exercise 2 15 min
Software design goals 10 min
Exercise 3 15 min
Wrap up 5 min




Warmup

® How do you manage dependencies in your code?
m Type in the meeting chat



Exercise 1

® Prompt
m Share your approach to software development with the group
m What are the similarities and differences between your approaches?

® Time limit: 15 minutes



Discussion

® Groups to share their findings



Three levels of software development

e Software Architecture
® Software Design
® |mplementation Details

The three levels of software development



Software Architecture

Overall strategy of software approach

Focuses on big decisions that are hard to change later

Involves architectural patterns (e.g., client-server, microservices)

Defines structure and interdependencies among key entities (modules, components)



Software Design

Tactics to make architecture strategy work

Addresses interaction of software entities and dependencies
Utilizes design patterns (e.g., Visitor, Strategy, Decorator)
Helps break down complex systems into manageable pieces



Implementation Details

Most concrete level of software development

Focuses on actual implementation of solutions

Addresses memory acquisition, exception safety, performance, etc.
Includes implementation patterns and language idioms (best practices)



Idioms

® Can fall into Implementation Details or Software Design categories
® Address problems at implementation or design level

® Examples

m C++ idioms:
— RAIl (Resource Acquisition Is Initialization)
— Copy-and-swap idiom
— Pimpl idiom
m Python idioms:
— List comprehensions
— Context managers (with statement)
— Decorators



Exercise 2

® Prompt
m Provide examples of your favorite design patterns and programming idioms
m How do you use them?

® Time limit: 15 minutes



Discussion

® Groups to share their findings



Software design goals

® Design for change
® Design for testability
® Design for extension



Design for change

® Embrace change as an inherent part of software development
® Avoid combining unrelated, orthogonal aspects to prevent coupling
® Avoid premature abstraction if you are not sure about the next change



Design for testability

® Understand tests are your protection layer against accidentally breaking things
® Separate concerns for the sake of testability
e Consider private member functions that need testing to be misplaced



Design for extension

® Favor design that makes it easy to extend code
® Design for code additions by all means of feature of your language
m base classes
m templates
m function overloading
m template specialization
® Avoid premature abstraction if you are not sure about the next addition



Summary

Treat software design as an essential part of writing software.

Understand software design as the art of managing dependencies and abstractions.
Consider the boundary between software design and software architecture as fluid.
Design for easy change and make software more adaptable.

Avoid unnecessary coupling and dependencies to make software more adaptable to
frequent changes.



What is next?

® Next session
m Discussion session on the Single Responsibility Principle
m Watch episode 9 - The Single Responsibility Principle



Final words

Always leave the code better than you found it.
— The Software Craftsmanship Rule



