
Clean Code SOLID
Foundations of the SOLID Principles



Pre-work

• Video: https://cleancoders.com/episode/clean-code-episode-8
• Exam: https://cleancoders.com/episode/clean-code-episode-8/exam

https://cleancoders.com/episode/clean-code-episode-8
https://cleancoders.com/episode/clean-code-episode-8/exam


Chapters

Chapter Time

Overview 00:44
Special Relativity 04:45
The Source Code is the Design 11:14
Design Smells 20:04
Rigidity 20:33
Fragility 23:06
Immobility 24:43
Viscosity 26:07
Needless Complexity 27:44

Chapter Time

Code Rot 30:37
Version Two 33:54
Version Three 35:57
Summary 36:51
What is OO 37:29
Dependency Inversion 39:15
What is OO? 43:30
Dependency Management 46:43
Conclusion 48:46



Timetable

Activity Time

Warmup 5 min
Exercise 1 15 min
Three levels of software development 15 min
Exercise 2 15 min
Software design goals 10 min
Exercise 3 15 min
Wrap up 5 min



Warmup

• How do you manage dependencies in your code?
Type in the meeting chat



Exercise 1

• Prompt
Share your approach to software development with the group
What are the similarities and differences between your approaches?

• Time limit: 15 minutes



Discussion

• Groups to share their findings



Three levels of software development

• Software Architecture
• Software Design
• Implementation Details

The three levels of software development



Software Architecture

• Overall strategy of software approach
• Focuses on big decisions that are hard to change later
• Involves architectural patterns (e.g., client-server, microservices)
• Defines structure and interdependencies among key entities (modules, components)



Software Design

• Tactics to make architecture strategy work
• Addresses interaction of software entities and dependencies
• Utilizes design patterns (e.g., Visitor, Strategy, Decorator)
• Helps break down complex systems into manageable pieces



Implementation Details

• Most concrete level of software development
• Focuses on actual implementation of solutions
• Addresses memory acquisition, exception safety, performance, etc.
• Includes implementation patterns and language idioms (best practices)



Idioms

• Can fall into Implementation Details or Software Design categories
• Address problems at implementation or design level
• Examples

C++ idioms:
– RAII (Resource Acquisition Is Initialization)
– Copy-and-swap idiom
– Pimpl idiom

Python idioms:
– List comprehensions
– Context managers (with statement)
– Decorators



Exercise 2

• Prompt
Provide examples of your favorite design patterns and programming idioms
How do you use them?

• Time limit: 15 minutes



Discussion

• Groups to share their findings



Software design goals

• Design for change
• Design for testability
• Design for extension



Design for change

• Embrace change as an inherent part of software development
• Avoid combining unrelated, orthogonal aspects to prevent coupling
• Avoid premature abstraction if you are not sure about the next change



Design for testability

• Understand tests are your protection layer against accidentally breaking things
• Separate concerns for the sake of testability
• Consider private member functions that need testing to be misplaced



Design for extension

• Favor design that makes it easy to extend code
• Design for code additions by all means of feature of your language

base classes
templates
function overloading
template specialization

• Avoid premature abstraction if you are not sure about the next addition



Summary

• Treat software design as an essential part of writing software.
• Understand software design as the art of managing dependencies and abstractions.
• Consider the boundary between software design and software architecture as fluid.
• Design for easy change and make software more adaptable.
• Avoid unnecessary coupling and dependencies to make software more adaptable to

frequent changes.



What is next?

• Next session
Discussion session on the Single Responsibility Principle
Watch episode 9 - The Single Responsibility Principle



Final words

Always leave the code better than you found it.
– The Software Craftsmanship Rule


