
Clean Code Fundamentals
Polly want a message



Pre-work

• Video: https://www.youtube.com/watch?v=XXi_FBrZQiU

https://www.youtube.com/watch?v=XXi_FBrZQiU


Chapters

Chapter Time

Design stamina hypothesis 03:50
Procedures vs. OO 05:59
Churn vs. complexity 07:49
Design star anti-pattern 11:04
Easy is the enemy of simple 15:35
Affordances 21:35

Chapter Time

Anthropomorphic polymorphic 24:24
Resolution 29:55
Isolate thing you want to vary 32:13
Push conditionals back on stack 33:15
Dependency injection 34:47
But, conditionals? 35:24



Timetable

Activity Time

Warmup 5 min
Exercise 1 30 min
Exercise 2 30 min
Exercise 3 20 min
Wrap up 5 min



Warmup

• Do you have the “death star” anti-pattern examples from your code?
Type in the meeting chat



Exercise 1

• Prompt
1. How object-oriented design principles can improve (or detract) the success of a project

or application?
2. Are there any similarities or differences between OOP and TDD?

• Time limit: 10 minutes



Discussion

• Groups to share their findings



Possible answers

• Pros
Modularity and reusability

– Can reduce time and effort required to develop and maintain the code
Abstraction and encapsulation

– Hides the implementation details, making the code more readable
Flexibility and adaptability

– Loose coupling and polymorphism makes it easier to change or update individual
objects without affecting the rest of the system

Improved debugging and testing
– Makes it easier to isolate and debug individual objects

• Cons
If not properly applied, can lead to complex and hard-to-maintain code, or overly
complex class hierarchies (“Faux OO”)
Not always the best fit for every type of problem or project



Exercise 2

• Dependency injection
Design pattern that involves passing objects as dependencies to an object, rather than
creating these dependencies within the object itself

• Prompt
Discuss the benefits and challenges of using dependency injection in a project that
involves multiple objects that depend on each other
Consider the following questions:

1. How does dependency injection help decouple the objects in the project?
2. What are the trade-offs of using dependency injection versus creating dependencies

within the objects themselves?
3. How does dependency injection impact the maintainability and scalability of the

project?
4. Can you think of a real-world example where dependency injection would be useful?

• Time limit: 15 minutes



Discussion

• Groups to share their findings



Exercise 3

• What is polymorphism
The quality where different kinds of objects can respond to the same message
Objects can take on many forms and behave differently based on context

• Prompt
1. How does polymorphism make code more expressive and modular?
2. What are the trade-offs of using polymorphism, and how to mitigate them?
3. How can you test code with polymorphism, and what are the challenges?

• Time limit: 10 minutes



Discussion

• Groups to share their findings



Possible answers

• How does polymorphism make code more expressive and modular?
Creates a more dynamic code, as the same message can have different effects on
different objects
Leads to more modular code, as different implementations of a message can be
separated into different classes; easier to reuse and maintain the code

• What are the trade-offs of using polymorphism, and how to mitigate them?
Can make the code harder to understand and maintain since the same message can
have different effects on different objects
Can lead to runtime errors if the message is sent to an object that doesn’t have an
implementation of that message

• How can you test code with polymorphism, and what are the challenges?
Test the behavior of each implementation of a message
Ensure that the code functions correctly when you send messages to objects of
different types



Summary

• OOP affords . . . objects
Anthropomorphic

– The attribution of human traits, emotions or intentions to non-human entities
Polymorphic

– The quality where different kinds of objects can respond to the same message
Loosely-coupled

– Objects strive for independence
Role-playing

– Objects are more players of their roles than instances of their types
Factory-created

– Factories hide the rules of picking the right player for a role
Message-sending

– “I know what I want, you know how to do it”



What is next?

• Next session
We will do dojo of participants’ choice

• Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
– The Software Craftsmanship Rule


