Clean Code Fundamentals

Polly want a message



Pre-work

® Video: https://www.youtube.com/watch?v=XXi_FBrZQiU


https://www.youtube.com/watch?v=XXi_FBrZQiU

Chapters

Chapter Time
Design stamina hypothesis ~ 03:50
Procedures vs. OO 05:59
Churn vs. complexity 07:49
Design star anti-pattern 11:04
Easy is the enemy of simple 15:35
Affordances 21:35

Chapter Time
Anthropomorphic polymorphic 24:24
Resolution 29:55
Isolate thing you want to vary 32:13
Push conditionals back on stack 33:15
Dependency injection 34:47

But, conditionals?

35:24




Timetable

Activity Time
Warmup 5 min
Exercise 1 30 min
Exercise 2 30 min
Exercise 3 20 min
Wrap up 5 min




Warmup

® Do you have the "death star” anti-pattern examples from your code?
m Type in the meeting chat



Exercise 1

® Prompt
1. How object-oriented design principles can improve (or detract) the success of a project
or application?
2. Are there any similarities or differences between OOP and TDD?
® Time limit: 10 minutes



Discussion

® Groups to share their findings



Possible answers

® Pros
m Modularity and reusability
— Can reduce time and effort required to develop and maintain the code
m Abstraction and encapsulation
— Hides the implementation details, making the code more readable
m Flexibility and adaptability
— Loose coupling and polymorphism makes it easier to change or update individual
objects without affecting the rest of the system
m Improved debugging and testing
— Makes it easier to isolate and debug individual objects
® Cons
m If not properly applied, can lead to complex and hard-to-maintain code, or overly
complex class hierarchies (“Faux O0")
m Not always the best fit for every type of problem or project



Exercise 2

® Dependency injection
m Design pattern that involves passing objects as dependencies to an object, rather than
creating these dependencies within the object itself
® Prompt
m Discuss the benefits and challenges of using dependency injection in a project that
involves multiple objects that depend on each other
m Consider the following questions:
1. How does dependency injection help decouple the objects in the project?

2. What are the trade-offs of using dependency injection versus creating dependencies
within the objects themselves?

3. How does dependency injection impact the maintainability and scalability of the
project?
4. Can you think of a real-world example where dependency injection would be useful?
® Time limit: 15 minutes



Discussion

® Groups to share their findings



Exercise 3

® What is polymorphism
m The quality where different kinds of objects can respond to the same message
m Objects can take on many forms and behave differently based on context

® Prompt
1. How does polymorphism make code more expressive and modular?
2. What are the trade-offs of using polymorphism, and how to mitigate them?
3. How can you test code with polymorphism, and what are the challenges?

® Time limit: 10 minutes



Discussion

® Groups to share their findings



Possible answers

® How does polymorphism make code more expressive and modular?
m Creates a more dynamic code, as the same message can have different effects on
different objects
m Leads to more modular code, as different implementations of a message can be
separated into different classes; easier to reuse and maintain the code
® What are the trade-offs of using polymorphism, and how to mitigate them?
m Can make the code harder to understand and maintain since the same message can
have different effects on different objects
m Can lead to runtime errors if the message is sent to an object that doesn’t have an
implementation of that message
® How can you test code with polymorphism, and what are the challenges?
m Test the behavior of each implementation of a message
m Ensure that the code functions correctly when you send messages to objects of
different types



Summary

® OOP affords ... objects
m Anthropomorphic
— The attribution of human traits, emotions or intentions to non-human entities
Polymorphic
— The quality where different kinds of objects can respond to the same message
Loosely-coupled
— Objects strive for independence
Role-playing
— Objects are more players of their roles than instances of their types
Factory-created
— Factories hide the rules of picking the right player for a role
m Message-sending
— "l know what | want, you know how to do it”



What is next?

® Next session
m We will do dojo of participants’ choice

® Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
— The Software Craftsmanship Rule



