
Clean Code Fundamentals
Functions



Pre-work

• Video: https://cleancoders.com/episode/clean-code-episode-3
• Exam: https://cleancoders.com/episode/clean-code-episode-3/exam

https://cleancoders.com/episode/clean-code-episode-3
https://cleancoders.com/episode/clean-code-episode-3/exam


Timetable

Activity Time

Warmup 5 min
Exercise 1 20 min
Exercise 2 20 min
Exercise 3 20 min
Wrap up 5 min



Warmup

• What are some “landmarks” you look for when you’re reading code?
Type in the meeting chat



Exercise 1

• Prompt
How to safely refactor code without breaking it? Discuss possible strategies.
What to do if code is not covered by tests?

• Time limit: 10 minutes



Safe refactoring

• Refactoring is a process of
restructuring existing code
without changing its external behavior

• Safe refactoring
Put the system under a test
Run tests often
Understand test coverage to avoid blind spots



Common approach to working with legacy code

• Create a “characterization test” that captures the current behavior
• Restructure the code to enable testing of a specific part of the code
• Write a test for wanted behavior that fails
• Implement the behavior to make the test pass



Characterization test

• This test has many names
“Characterization test”
“Golden Master”
“Snapshot test”

• Characterization test checks general behavior
Uses fixed seed for program inputs
Checks that the output is the same as the previous run



Exercise 2

• Prompt
What code behavior do you find suspicious and why?
What “code smells” do you find useful and why?

• Time limit: 10 minutes



Code smells catalog
• Bloaters

Long method
Long parameter list
Data clumps
Primitive obsession
Long class

• Object-Orientation Abusers
Switch statements
Refused bequest
Alternative classes with different
interfaces
Temporary field

• Change Preventers
Divergent change
Shotgun surgery
Parallel inheritance hierarchies

• Dispensables
Lazy class
Data class
Comments
Duplicate code
Dead code
Speculative generality

• Couplers
Feature envy
Inappropriate intimacy
Incomplete library class
Message chains
Middle man

https://refactoring.guru/refactoring/smells


“Feature envy” code smell

• Definition
A method accesses the data of another object more than its own data

• Possible reason
After fields move to a data class/structure

• Treatment
Move operations on data to the class as well



Exercise 3

• Prompt
How to define if a function is doing “one thing”?

• Time limit: 10 minutes



Where classes hide

• Classes hide in long functions with many local variables
• Functions that fill the screen are likely doing more than one thing
• Functions crossing levels of abstraction



“Extract class” refactoring

• Create characterizations test – run often
• Extract function body to a new class’s invoke method
• Extract local variables to fields
• Extract methods or new classes
• Repeat until you can’t extract anymore



Wrap up

• Functions should be small
• Functions should do one thing
• Functions should have one level of abstraction
• Functions should have descriptive names



What is next?

• Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
– The Software Craftsmanship Rule


