Clean Code Fundamentals

Functions



Pre-work

® Video: https://cleancoders.com/episode/clean-code-episode-3
® Exam: https://cleancoders.com/episode/clean-code-episode-3/exam


https://cleancoders.com/episode/clean-code-episode-3
https://cleancoders.com/episode/clean-code-episode-3/exam

Timetable

Activity Time
Warmup 5 min
Exercise 1 20 min
Exercise 2 20 min
Exercise 3 20 min
Wrap up 5 min




Warmup

® What are some “landmarks” you look for when you're reading code?
m Type in the meeting chat



Exercise 1

® Prompt
m How to safely refactor code without breaking it? Discuss possible strategies.
m What to do if code is not covered by tests?

® Time limit: 10 minutes



Safe refactoring

® Refactoring is a process of
m restructuring existing code
m without changing its external behavior
® Safe refactoring
m Put the system under a test
m Run tests often
m Understand test coverage to avoid blind spots



Common approach to working with legacy code

Create a "characterization test” that captures the current behavior
Restructure the code to enable testing of a specific part of the code
Write a test for wanted behavior that fails

Implement the behavior to make the test pass



Characterization test

® This test has many names
m “Characterization test”
m "Golden Master”
m “Snapshot test”
® Characterization test checks general behavior
m Uses fixed seed for program inputs
m Checks that the output is the same as the previous run



Exercise 2

® Prompt
m What code behavior do you find suspicious and why?
m What “code smells” do you find useful and why?

® Time limit: 10 minutes



Code smells catalog

® Bloaters
m Long method
m Long parameter list
m Data clumps
m Primitive obsession
m Long class
® Object-Orientation Abusers
m Switch statements
m Refused bequest
m Alternative classes with different
interfaces
m Temporary field
® Change Preventers
m Divergent change
m Shotgun surgery
m Parallel inheritance hierarchies

® Dispensables

Lazy class

Data class
Comments

Duplicate code

Dead code
Speculative generality

® Couplers

Feature envy
Inappropriate intimacy
Incomplete library class
Message chains

Middle man


https://refactoring.guru/refactoring/smells

“Feature envy” code smell

® Definition

B A method accesses the data of another object more than its own data
® Possible reason

m After fields move to a data class/structure
® Treatment

m Move operations on data to the class as well



Exercise 3

® Prompt
m How to define if a function is doing “one thing"?
® Time limit: 10 minutes



Where classes hide

® (Classes hide in long functions with many local variables
® Functions that fill the screen are likely doing more than one thing
® Functions crossing levels of abstraction



“Extract class” refactoring

Create characterizations test — run often

Extract function body to a new class’'s invoke method
Extract local variables to fields

Extract methods or new classes

Repeat until you can't extract anymore



Wrap up

Functions should be small

Functions should do one thing

Functions should have one level of abstraction
Functions should have descriptive names



What is next?

® Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
— The Software Craftsmanship Rule



